Termination of the given ITRSProblem could successfully be proven:
↳ ITRS
↳ ITRStoIDPProof
ITRS problem:
The following domains are used:
z
The TRS R consists of the following rules:
Cond_eval1(TRUE, x, y, z) → eval(+@z(x, 1@z), y, z)
Cond_eval(TRUE, x, y, z) → eval(x, y, +@z(z, 1@z))
eval(x, y, z) → Cond_eval1(&&(>@z(y, x), >@z(z, x)), x, y, z)
eval(x, y, z) → Cond_eval(&&(>@z(y, x), >=@z(x, z)), x, y, z)
The set Q consists of the following terms:
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
Added dependency pairs
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
I DP problem:
The following domains are used:
z
The ITRS R consists of the following rules:
Cond_eval1(TRUE, x, y, z) → eval(+@z(x, 1@z), y, z)
Cond_eval(TRUE, x, y, z) → eval(x, y, +@z(z, 1@z))
eval(x, y, z) → Cond_eval1(&&(>@z(y, x), >@z(z, x)), x, y, z)
eval(x, y, z) → Cond_eval(&&(>@z(y, x), >=@z(x, z)), x, y, z)
The integer pair graph contains the following rules and edges:
(0): COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0])
(1): EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])
(2): EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])
(3): COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(x[3], y[3], +@z(z[3], 1@z))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(+@z(x[0], 1@z) →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(+@z(x[0], 1@z) →* x[2]))
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(&&(>@z(y[1], x[1]), >@z(z[1], x[1])) →* TRUE))
(2) -> (3), if ((z[2] →* z[3])∧(x[2] →* x[3])∧(y[2] →* y[3])∧(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])) →* TRUE))
(3) -> (1), if ((y[3] →* y[1])∧(+@z(z[3], 1@z) →* z[1])∧(x[3] →* x[1]))
(3) -> (2), if ((y[3] →* y[2])∧(+@z(z[3], 1@z) →* z[2])∧(x[3] →* x[2]))
The set Q consists of the following terms:
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0])
(1): EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])
(2): EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])
(3): COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(x[3], y[3], +@z(z[3], 1@z))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(+@z(x[0], 1@z) →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(+@z(x[0], 1@z) →* x[2]))
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(&&(>@z(y[1], x[1]), >@z(z[1], x[1])) →* TRUE))
(2) -> (3), if ((z[2] →* z[3])∧(x[2] →* x[3])∧(y[2] →* y[3])∧(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])) →* TRUE))
(3) -> (1), if ((y[3] →* y[1])∧(+@z(z[3], 1@z) →* z[1])∧(x[3] →* x[1]))
(3) -> (2), if ((y[3] →* y[2])∧(+@z(z[3], 1@z) →* z[2])∧(x[3] →* x[2]))
The set Q consists of the following terms:
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair COND_EVAL1(TRUE, x, y, z) → EVAL(+@z(x, 1@z), y, z) the following chains were created:
- We consider the chain EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1]), COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0]), EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2]) which results in the following constraint:
(1) (z[0]=z[2]∧z[1]=z[0]∧y[0]=y[2]∧+@z(x[0], 1@z)=x[2]∧y[1]=y[0]∧x[1]=x[0]∧&&(>@z(y[1], x[1]), >@z(z[1], x[1]))=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0], z[0])≥EVAL(+@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥))
We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(2) (>@z(y[1], x[1])=TRUE∧>@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(+@z(x[1], 1@z), y[1], z[1])∧(UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (-1 + y[1] + (-1)x[1] ≥ 0∧-1 + z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (-1 + y[1] + (-1)x[1] ≥ 0∧-1 + z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (-1 + z[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧1 ≥ 0∧0 ≥ 0)
We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(6) (x[1] ≥ 0∧y[1] + (-1)z[1] + x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧1 ≥ 0∧0 ≥ 0)
We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(7) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧1 ≥ 0∧0 ≥ 0)
We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(8) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧1 ≥ 0∧0 ≥ 0)
(9) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧1 ≥ 0∧0 ≥ 0)
- We consider the chain EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1]), COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0]), EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1]) which results in the following constraint:
(10) (z[1]=z[0]∧y[0]=y[1]1∧z[0]=z[1]1∧+@z(x[0], 1@z)=x[1]1∧y[1]=y[0]∧x[1]=x[0]∧&&(>@z(y[1], x[1]), >@z(z[1], x[1]))=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0], z[0])≥EVAL(+@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥))
We simplified constraint (10) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(11) (>@z(y[1], x[1])=TRUE∧>@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(+@z(x[1], 1@z), y[1], z[1])∧(UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥))
We simplified constraint (11) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(12) (-1 + y[1] + (-1)x[1] ≥ 0∧-1 + z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (12) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(13) (-1 + y[1] + (-1)x[1] ≥ 0∧-1 + z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (13) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(14) (-1 + z[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(15) (x[1] ≥ 0∧y[1] + (-1)z[1] + x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(16) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(17) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(18) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
For Pair EVAL(x, y, z) → COND_EVAL1(&&(>@z(y, x), >@z(z, x)), x, y, z) the following chains were created:
- We consider the chain EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1]) which results in the following constraint:
(19) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
We simplified constraint (19) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(20) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (20) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(21) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (21) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(22) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0)
We simplified constraint (22) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(23) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 = 0∧0 = 0)
For Pair EVAL(x, y, z) → COND_EVAL(&&(>@z(y, x), >=@z(x, z)), x, y, z) the following chains were created:
- We consider the chain EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2]) which results in the following constraint:
(24) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
We simplified constraint (24) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(25) ((UIncreasing(COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (25) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(26) ((UIncreasing(COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (26) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(27) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
We simplified constraint (27) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(28) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0)
For Pair COND_EVAL(TRUE, x, y, z) → EVAL(x, y, +@z(z, 1@z)) the following chains were created:
- We consider the chain EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2]), COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(x[3], y[3], +@z(z[3], 1@z)), EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1]) which results in the following constraint:
(29) (x[2]=x[3]∧x[3]=x[1]∧y[3]=y[1]∧y[2]=y[3]∧&&(>@z(y[2], x[2]), >=@z(x[2], z[2]))=TRUE∧+@z(z[3], 1@z)=z[1]∧z[2]=z[3] ⇒ COND_EVAL(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL(TRUE, x[3], y[3], z[3])≥EVAL(x[3], y[3], +@z(z[3], 1@z))∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥))
We simplified constraint (29) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(30) (>@z(y[2], x[2])=TRUE∧>=@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(x[2], y[2], +@z(z[2], 1@z))∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥))
We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(31) (y[2] + -1 + (-1)x[2] ≥ 0∧x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[2] + (2)y[2] + (-1)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(32) (y[2] + -1 + (-1)x[2] ≥ 0∧x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[2] + (2)y[2] + (-1)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(33) (x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[2] + (2)y[2] + (-1)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(34) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧-1 + (-1)Bound + (-2)z[2] + (2)y[2] + (-1)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(35) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧0 ≥ 0)
We simplified constraint (35) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(36) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧0 ≥ 0)
(37) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧0 ≥ 0)
- We consider the chain EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2]), COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(x[3], y[3], +@z(z[3], 1@z)), EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2]) which results in the following constraint:
(38) (x[2]=x[3]∧y[2]=y[3]∧&&(>@z(y[2], x[2]), >=@z(x[2], z[2]))=TRUE∧y[3]=y[2]1∧+@z(z[3], 1@z)=z[2]1∧z[2]=z[3]∧x[3]=x[2]1 ⇒ COND_EVAL(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL(TRUE, x[3], y[3], z[3])≥EVAL(x[3], y[3], +@z(z[3], 1@z))∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥))
We simplified constraint (38) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(39) (>@z(y[2], x[2])=TRUE∧>=@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(x[2], y[2], +@z(z[2], 1@z))∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥))
We simplified constraint (39) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(40) (y[2] + -1 + (-1)x[2] ≥ 0∧x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[2] + (2)y[2] + (-1)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (40) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(41) (y[2] + -1 + (-1)x[2] ≥ 0∧x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧-1 + (-1)Bound + (-1)z[2] + (2)y[2] + (-1)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (41) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(42) (x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)x[2] ≥ 0 ⇒ -1 + (-1)Bound + (-1)z[2] + (2)y[2] + (-1)x[2] ≥ 0∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧0 ≥ 0)
We simplified constraint (42) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(43) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] + (-1)x[2] ≥ 0 ⇒ -1 + (-1)Bound + (-2)z[2] + (2)y[2] + (-1)x[2] ≥ 0∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧0 ≥ 0)
We simplified constraint (43) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(44) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧0 ≥ 0)
We simplified constraint (44) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(45) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧0 ≥ 0)
(46) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧0 ≥ 0)
To summarize, we get the following constraints P≥ for the following pairs.
- COND_EVAL1(TRUE, x, y, z) → EVAL(+@z(x, 1@z), y, z)
- (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧1 ≥ 0∧0 ≥ 0)
- (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧1 ≥ 0∧0 ≥ 0)
- (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
- (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
- EVAL(x, y, z) → COND_EVAL1(&&(>@z(y, x), >@z(z, x)), x, y, z)
- (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 = 0∧0 = 0)
- EVAL(x, y, z) → COND_EVAL(&&(>@z(y, x), >=@z(x, z)), x, y, z)
- (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0)
- COND_EVAL(TRUE, x, y, z) → EVAL(x, y, +@z(z, 1@z))
- (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧0 ≥ 0)
- (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧0 ≥ 0)
- (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧0 ≥ 0)
- (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 + (-1)Bound + x[2] + (2)z[2] ≥ 0∧(UIncreasing(EVAL(x[3], y[3], +@z(z[3], 1@z))), ≥)∧0 ≥ 0)
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4 + (2)x3 + (-1)x2 + (-1)x1
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(+@z(x1, x2)) = x1 + x2
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + (2)x3 + (-1)x2 + (-1)x1
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + (2)x2 + (-1)x1
POL(FALSE) = 1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
The following pairs are in P>:
COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(x[3], y[3], +@z(z[3], 1@z))
The following pairs are in Pbound:
COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(x[3], y[3], +@z(z[3], 1@z))
The following pairs are in P≥:
COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])
At least the following rules have been oriented under context sensitive arithmetic replacement:
FALSE1 → &&(FALSE, FALSE)1
TRUE1 → &&(TRUE, TRUE)1
+@z1 ↔
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0])
(1): EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])
(2): EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], x[2]), >=@z(x[2], z[2])), x[2], y[2], z[2])
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(+@z(x[0], 1@z) →* x[2]))
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(&&(>@z(y[1], x[1]), >@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(+@z(x[0], 1@z) →* x[1]))
The set Q consists of the following terms:
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(1): EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])
(0): COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0])
(1) -> (0), if ((z[1] →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(&&(>@z(y[1], x[1]), >@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(+@z(x[0], 1@z) →* x[1]))
The set Q consists of the following terms:
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1]) the following chains were created:
- We consider the chain EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1]) which results in the following constraint:
(1) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) (0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
For Pair COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0]) the following chains were created:
- We consider the chain EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1]), COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0]), EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1]) which results in the following constraint:
(6) (z[1]=z[0]∧y[0]=y[1]1∧z[0]=z[1]1∧+@z(x[0], 1@z)=x[1]1∧y[1]=y[0]∧x[1]=x[0]∧&&(>@z(y[1], x[1]), >@z(z[1], x[1]))=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0], z[0])≥EVAL(+@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥))
We simplified constraint (6) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:
(7) (>@z(y[1], x[1])=TRUE∧>@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(+@z(x[1], 1@z), y[1], z[1])∧(UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) (-1 + y[1] + (-1)x[1] ≥ 0∧-1 + z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧-1 + (-1)Bound + y[1] + (-1)x[1] ≥ 0∧0 ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) (-1 + y[1] + (-1)x[1] ≥ 0∧-1 + z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧-1 + (-1)Bound + y[1] + (-1)x[1] ≥ 0∧0 ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) (-1 + z[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧-1 + (-1)Bound + y[1] + (-1)x[1] ≥ 0∧0 ≥ 0)
We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(11) (z[1] + (-1)y[1] + x[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(12) (y[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(13) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(14) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
To summarize, we get the following constraints P≥ for the following pairs.
- EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])
- (0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
- COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0])
- (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
- (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(+@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + x3 + (-1)x2 + (-1)x1
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(+@z(x1, x2)) = x1 + x2
POL(EVAL(x1, x2, x3)) = -1 + x2 + (-1)x1
POL(FALSE) = 0
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
The following pairs are in P>:
COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0])
The following pairs are in Pbound:
COND_EVAL1(TRUE, x[0], y[0], z[0]) → EVAL(+@z(x[0], 1@z), y[0], z[0])
The following pairs are in P≥:
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])
At least the following rules have been oriented under context sensitive arithmetic replacement:
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
+@z1 ↔
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(1): EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], x[1]), >@z(z[1], x[1])), x[1], y[1], z[1])
The set Q consists of the following terms:
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.